Part Number Hot Search : 
FMM50 L431L LM137 U2860 BCR185W DNB6538 TA78M06F L431L
Product Description
Full Text Search
 

To Download 10-FZ06NRA045FH Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  fz06nra045fh preliminary datasheet flownpc 0 600v/30a neutral point clamped inverter reactive power capability sic buck diode clip-in pcb mounting low inductance layout solar inverter ups fz06nra045fh tj=25c, unless otherwise specified parameter symbol value unit buck diode t h =80c 20 t c =80c 26 t h =80c 40 t c =80c 61 buck mosfet t h =80c 36 t c =80c 44 t h =80c 125 t c =80c 189 t j =t j max t j =25c 175 maximum junction temperature c t p limited by t j max w 600 t j =t j max a t j =t j max a v v 600 c v 150 20 pulsed drain current i dpulse p tot gate-source peak voltage vgs maximum junction temperature power dissipation t j max i frm t j max repetitive peak forward current drain to source breakdown voltage v ds dc drain current i d features flow0 12mm housing target applications schematic types maximum ratings condition v rrm peak repetitive reverse voltage w power dissipation per diode p tot dc forward current a t j =t j max t p limited by t j max a i f t c =100c 70 tc=25c 230 copyright vincotech 1 revision: 2
fz06nra045fh preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition boost igbt t h =80c 47 t c =80c 50 t h =80c 85 t c =80c 129 t sc t j 150c 6 s v cc v ge =15v 360 v boost inverse diode t h =80c 2 t c =80c t h =80c 21 t c =80c boost diode t j =25c t h =80c 16 t c =80c 21 t h =80c 30 t c =80c 46 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm 600 maximum junction temperature t j max 175 t c =25c v rrm dc forward current p tot power dissipation per diode t j =t j max v a v c w a collector-emitter break down voltage t p limited by t j max repetitive peak collector current gate-emitter peak voltage maximum junction temperature short circuit ratings dc collector current power dissipation per igbt peak repetitive reverse voltage a t j =t j max w a w v c v a v rrm v ge i f t j =t j max t j max p tot power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm t p limited by t j max v ce i cpuls t j =t j max i c peak repetitive reverse voltage c maximum junction temperature t j max 150 -40?+(tjmax - 25) c storage temperature t stg -40?+125 c clearance insulation voltage creepage distance t op operation temperature under switching condition 36 1200 150 600 225 20 copyright vincotech 2 revision: 2
fz06nra045fh preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 1 1,55 1,8 t j =125c 1,66 t j =25c 25 t j =125c 23 t j =25c 9,9 t j =125c 10,7 t j =25c 0,108 t j =125c 0,113 di ( rec ) max t j =25c 7192 /d t t j =125c 5586 t j =25c 0,007 t j =125c 0,010 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 2,36 k/w t j =25c 42 t j =125c 83 t j =25c 2,1 3 3,9 t j =125c t j =25c 200 t j =125c t j =25c 25 t j =125c t j =25c 33 t j =125c 31 t j =25c 7 t j =125c 8 t j =25c 278 t j =125c 298 t j =25c 4 t j =125c 6 t j =25c 0,095 t j =125c 0,108 t j =25c 0,064 t j =125c 0,091 pf f=1mhz 0 100 i dss 0,003 v ds =v gs 350 30 30 16 600 15 350 0 20 thermal grease thickness 50um  = 1 w/mk 350 c iss c oss q gs rgoff=8  erec i rrm t d(on) r ds(on) v (gs)th i gss t r t d(off) e on q gd r thjh 44 tj=25c reverse recovery time reverse recovered energy peak rate of fall of recovery current static drain to source on resistance buck mosfet gate threshold voltage value conditions characteristic values v c mws a/ s m  ns mws 6800 k/w 190  a na fall time turn off delay time thermal resistance chip to heatsink per chip turn-on energy loss per pulse zero gate voltage drain current peak reverse recovery current diode forward voltage rise time 51 320 nc 30 rgon=8  0 10 total gate charge reverse recovered charge buck diode gate to source leakage current turn on delay time 15 t f v f q g q rr t rr output capacitance rgon=8  turn-off energy loss per pulse input capacitance gate to drain charge gate to source charge e off tj=25c 0,56 ns a v 34 150 copyright vincotech 3 revision: 2
fz06nra045fh preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value conditions characteristic values t j =25c 5 5,8 6,5 t j =125c t j =25c 1 1,14 1,8 t j =125c 1,19 t j =25c 30 t j =125c t j =25c 650 t j =125c t j =25c 40 t j =125c 37 t j =25c 10 t j =125c 13 t j =25c 454 t j =125c 502 t j =25c 64 t j =125c 87 t j =25c 0,719 t j =125c 0,959 t j =25c 0,854 t j =125c 1,163 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 1,11 k/w t j =25c 9,07 tj=125c 9,43 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 4,36 k/w t j =25c 1,5 3,14 3,5 t j =125c 2,71 t j =25c 100 t j =125c t j =25c 92 t j =125c 112 t j =25c 37,1 t j =125c 51,9 t j =25c 2,8 t j =125c 5,7 di ( rec ) max t j =25c 20796 /d t t j =125c 20514 t j =25c 0,54 t j =125c 1,39 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 2,32 k/w r 25 tol. 13% tj=25c 19,1 22 24,9 k  r 100 tol. 5% tj=100c 1411 1486 1560  * see details on thermistor charts on fi g ure 2. pf v  a ns a/ s a mws c v 4000 137 tj=25c gate charge input capacitance output capacitance c rss c oss c ies peak reverse recovery current reverse recovered charge turn-on energy loss per pulse boost igbt gate-emitter leakage current gate emitter threshold voltage fall time turn-off delay time collector-emitter saturation voltage t r integrated gate resistor turn-on delay time collector-emitter cut-off incl diode diode forward voltage v f boost inverse diode r gint t d(on) i ges boost diode reverse transfer capacitance rise time turn-off energy loss per pulse q gate e off e on i ces v ge(th) v ce(sat) t d(off) t f k ns mws 0  nc 75 tj=25c power dissipation p mw 210 rated resistance* b-value b (25/100) tol. 3% v ce =v ge f=1mhz 15 15 0  a na v v reverse recovery energy t rr q rr e rec reverse recovery time peak rate of fall of recovery current thermistor diode forward voltage reverse leakage current v f i r i rrm rgoff=8  rgon=8  20 18 30 30 0,0012 20 350 25 600 0 15 480 350 30 1200 rgon=8  tj=25c tj=25c 288 4620 470 none copyright vincotech 4 revision: 2
fz06nra045fh preliminary datasheet figure 1 mosfet figure 2 mosfet typical output characteristics i c = f(v ce ) i c = f(v ce ) ups at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 4 v to 14 v in steps of 1 v v ge from 4 v to 14 v in steps of 1 v figure 3 mosfet figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v buck typical output characteristics 0 20 40 60 80 100 012345 v ce (v) i c (a) 0 5 10 15 20 25 30 0123456 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 00,511,522,533,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 012345 v ce (v) i c (a) copyright vincotech 5 revision: 2
fz06nra045fh preliminary datasheet figure 5 mosfet figure 6 mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a r goff = 8 ? figure 7 fred figure 8 fred typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a buck e on high t e off high t e on low t e off low t 0,000 0,100 0,200 0,300 0,400 0,500 0 1 02 03 04 05 06 0 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,000 0,100 0,200 0,300 0,400 0,500 0 8 16 24 32 40 r g (w) e (mws) e rec high t e rec low t 0,000 0,004 0,008 0,012 0,016 0,020 0 1 02 03 04 05 06 0 i c (a) e (mws) e rec high t e rec low t 0,000 0,004 0,008 0,012 0,016 0,020 0 8 16 24 32 40 r g (w) e (mws) copyright vincotech 6 revision: 2
fz06nra045fh preliminary datasheet figure 9 mosfet figure 10 mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a r goff = 8 ? figure 11 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of mosfet turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v buck t doff t f t don t r 0,00 0,01 0,10 1,00 0 102030405060 i c (a) t (ms) t rr high t t rr low t 0,000 0,005 0,010 0,015 0,020 0,025 0 8 16 24 32 40 r gon (w) t rr (ms) t doff t f t don t r 0,00 0,01 0,10 1,00 0 8 16 24 32 40 r g (w) t (ms) t rr high t t rr low t 0,000 0,003 0,006 0,009 0,012 0,015 0,018 0 1 02 03 04 05 06 0 i c (a) t rr (ms) copyright vincotech 7 revision: 2
fz06nra045fh preliminary datasheet figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of mosfet turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v figure 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of mosfet turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v buck i rrm high t i rrm low t 0 10 20 30 40 50 0 8 16 24 32 40 r gon (w) i rrm (a) q rr high t q rr low t 0 0,03 0,06 0,09 0,12 0,15 0 8 16 24 32 40 r gon ( ) q rr (mc) 0 5 10 15 20 25 30 0 102030405060 i c (a) i rrm (a) i rrm high t i rrm low t q rr high t q rr low t 0,00 0,03 0,06 0,09 0,12 0,15 0 102030405060 i c (a) q rr (mc) copyright vincotech 8 revision: 2
fz06nra045fh preliminary datasheet figure 17 fred figure 18 fred typical rate of fall of forward and reverse recovery current typical rate of fall of forward and reverse recovery current as a function of collector current as a function of mosfet turn on gate resisto r di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v figure 19 mosfet figure 20 fred mosfet transient thermal impedanc e fred transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,56 k/w r thjh = 2,36 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,04 8,6e+00 0,07 5,2e+00 0,13 1,4e+00 0,25 8,9e-01 0,23 2,2e-01 0,97 1,3e-01 0,09 3,6e-02 0,54 2,8e-02 0,03 5,0e-03 0,45 4,1e-03 0,05 2,6e-04 0,08 6,2e-04 buck t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 2000 4000 6000 8000 10000 12000 14000 16000 0 8 16 24 32 40 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 102030405060 i c (a) di rec / dt (a/ms) copyright vincotech 9 revision: 2
fz06nra045fh preliminary datasheet figure 21 mosfet figure 22 mosfet power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 c t j = 150 c v ge = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 c t j = 175 c buck 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 2
fz06nra045fh preliminary datasheet figure 25 mosfet figure 26 mosfet safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q g ) at at d = single pulse i c = 44 a th = 80 oc v ge = 15 v t j =t jmax oc buck v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 10us 0 1 2 3 4 5 6 7 8 9 10 0 15 30 45 60 75 90 105 120 135 150 q g (nc) v ge (v) 120 v 480 v copyright vincotech 11 revision: 2
fz06nra045fh preliminary datasheet figure 1 igbt figure 2 igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v boost 0 20 40 60 80 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) 0 5 10 15 20 25 30 0246810 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 012345 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) copyright vincotech 12 revision: 2
fz06nra045fh preliminary datasheet figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a r goff = 8 ? figure 7 fred figure 8 fred typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a boost e rec high t e rec low t 0 0,5 1 1,5 2 2,5 0 1 02 03 04 05 06 0 i c (a) e (mws) e rec high t e rec low t 0 0,4 0,8 1,2 1,6 2 0 8 16 24 32 40 r g ( ) e (mws) e off high t e on high t e on low t e off low t 0 0,5 1 1,5 2 2,5 0 1 02 03 04 05 06 0 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,5 1 1,5 2 2,5 0 8 16 24 32 40 r g ( ) e (mws) copyright vincotech 13 revision: 2
fz06nra045fh preliminary datasheet figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a r goff = 8 ? figure 11 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v boost t doff t f t don t r 0,001 0,01 0,1 1 10 0 102030405060 i c (a) t ( s) t doff t f t don t r 0,001 0,01 0,1 1 10 0 8 16 24 32 40 r g ( ) t ( s) t rr high t t rr low t 0,000 0,010 0,020 0,030 0,040 0,050 0,060 0,070 0,080 0 8 16 24 32 40 r gon (w) t rr (ms) t rr high t t rr low t 0,000 0,010 0,020 0,030 0,040 0,050 0,060 0,070 0 1 02 03 04 05 06 0 i c (a) t rr (ms) copyright vincotech 14 revision: 2
fz06nra045fh preliminary datasheet figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v figure 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v boost i rrm high t i rrm low t 0 20 40 60 80 100 120 140 160 0 8 16 24 32 40 r gon (w) i rrm (a) q rr high t q rr low t 0 1 2 3 4 5 6 7 0 8 16 24 32 40 r gon ( ) q rr (mc) 0 20 40 60 80 100 120 140 160 0 102030405060 i c (a) i rrm (a) i rrm high t i rrm low t q rr high t q rr low t 0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 0 102030405060 i c (a) q rr (mc) copyright vincotech 15 revision: 2
fz06nra045fh preliminary datasheet figure 17 fred figure 18 fred typical rate of fall of forward and reverse recovery current typical rate of fall of forward and reverse recovery current as a function of collector current as a function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v figure 19 igbt figure 20 fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 1,11 k/w r thjh = 2,32 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,06 9,9e+00 0,04 9,8e+00 0,22 1,2e+00 0,25 7,7e-01 0,59 1,4e-01 1,24 1,2e-01 0,17 2,2e-02 0,44 2,0e-02 0,03 2,7e-03 0,25 2,6e-03 0,04 2,7e-04 0,09 4,3e-04 boost t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 5000 10000 15000 20000 25000 0 8 16 24 32 40 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 5000 10000 15000 20000 25000 0 102030405060 i c (a) di rec / dt (a/ms) copyright vincotech 16 revision: 2
fz06nra045fh preliminary datasheet figure 21 igbt figure 22 igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc boost 0 20 40 60 80 100 120 140 160 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 15 30 45 60 75 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 17 revision: 2
fz06nra045fh preliminary datasheet figure 25 boost inverse diode figure 26 boost inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = tp / t r thjh = 4,36 k/w boost 0 5 10 15 20 25 30 03691215 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 18 revision: 2
fz06nra045fh preliminary datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r/ ? [] ?= ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? 25 100 / 25 11 25 )( tt b ertr copyright vincotech 19 revision: 2
fz06nra045fh preliminary datasheet t j 125 c r g on 8 ? r goff 8 ? figure 1 buck mosfet figure 2 buck mosfet turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) ups v ge (0%) = 0v v ge (0%) = 0v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 30 a i c (100%) = 30 a t doff = 0,30 s t don = 0,03 s t eoff = 0,31 s t eon = 0,05 s figure 3 buck mosfet figure 4 buck mosfet turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 30 a i c (100%) = 30 a t f = 0,01 s t r = 0,01 s switching definitions buck mosfet general conditions = = = i c 1% v ce 90% v ge 90% -30 0 30 60 90 120 150 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 time (us) % t dof f t eoff v ce i c v ge ic 10% v ge10% t don v ce 3% -40 0 40 80 120 160 200 2,85 2,93 3,01 3,09 3,17 3,25 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,2 0,24 0,28 0,32 0,36 0,4 time (us) % v ce i c t f i c10% i c90% -20 10 40 70 100 130 160 190 2,95 2,99 3,03 3,07 3,11 3,15 time(us) % tr v ce ic copyright vincotech 20 revision: 2
fz06nra045fh preliminary datasheet figure 5 buck mosfet figure 6 buck mosfet turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 10,43 kw p on (100%) = 10,43 kw e off (100%) = 0,09 mj e on (100%) = 0,11 mj t eoff = 0,31 s t eon = 0,05 s figure 7 buck mosfet figure 8 buck fred gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = 0v v d (100%) = 350 v v geon = 15 v i d (100%) = 30 a v c (100%) = 350 v i rrm (100%) = -23 a i c (100%) = 30 a t rr = 0,01 s q g = 189,26 nc switching definitions buck mosfet i c 1% v ge90% -20 0 20 40 60 80 100 120 -0,2 -0,1 0 0,1 0,2 0,3 0,4 time (us) % p of f e off t eoff v ce3% v ge10% -20 0 20 40 60 80 100 120 2,98 3 3,02 3,04 3,06 3,08 3,1 time(us) % p on e on t eon -5 0 5 10 15 20 -50 0 50 100 150 200 250 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 80 120 2,98 3 3,02 3,04 3,06 3,08 3,1 3,12 time(us) % i d v d fitted copyright vincotech 21 revision: 2
fz06nra045fh preliminary datasheet figure 9 buck fred figure 10 buck fred turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 30 a p rec (100%) = 10,43 kw q rr (100%) = 0,11 c e rec (100%) = 0,01 mj t qrr = 0,02 s t erec = 0,02 s figure 11 figure 12 buck stage switching measurement circuit boost stage switching measurement circuit measurement circuits switching definitions buck mosfet t qrr -100 -50 0 50 100 150 3 3,02 3,04 3,06 3,08 3,1 time(us) % i d q r r -20 0 20 40 60 80 100 120 140 2,98 3 3,02 3,04 3,06 3,08 3,1 3,12 time(us) % p rec e rec t erec copyright vincotech 22 revision: 2
fz06nra045fh preliminary datasheet t j 125 c r g on 8 ? r goff 8 ? figure 1 boost igbt figure 2 boost igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) solar inverter ups ups v ge (0%) = 0v v ge (0%) = 0v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 30 a i c (100%) = 30 a t doff = 0,50 s t don = 0,04 s t eoff = 0,70 s t eon = 0,14 s figure 3 boost igbt figure 4 boost igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 30 a i c (100%) = 30 a t f = 0,09 s t r = 0,01 s switching definitions boost igbt general conditions = = = i c 1% v ce 90% v ge 90% -30 0 30 60 90 120 150 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 0,85 time (us) % t do f f t eoff v ce i c v ge ic 10% v ge10% t don v ce 3% -40 0 40 80 120 160 200 240 280 320 360 400 440 480 520 3,9 3,98 4,06 4,14 4,22 4,3 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 0,3 0,34 0,38 0,42 0,46 0,5 0,54 0,58 0,62 0,66 0,7 0,74 0,78 time (us) % v ce i c t f i c10% i c90% -20 10 40 70 100 130 160 190 220 250 280 310 340 370 400 430 460 490 3,9 3,94 3,98 4,02 4,06 4,1 4,14 4,18 4,22 4,26 4,3 time(us) % tr v ce ic copyright vincotech 23 revision: 2
fz06nra045fh preliminary datasheet figure 5 boost igbt figure 6 boost igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 10,55 kw p on (100%) = 10,55 kw e off (100%) = 1,16 mj e on (100%) = 0,96 mj t eoff = 0,70 s t eon = 0,14 s figure 7 boost igbt figure 8 boost fred gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = 0v v d (100%) = 350 v v geon = 15 v i d (100%) = 30 a v c (100%) = 350 v i rrm (100%) = -112 a i c (100%) = 30 a t rr = 0,05 s q g = 407,76 nc switching definitions boost igbt i c 1% v ge90% -20 0 20 40 60 80 100 120 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 time (us) % p of f e off t eoff v ce3% v ge10% -20 0 20 40 60 80 100 120 140 160 180 200 220 240 3,95 3,97 3,99 4,01 4,03 4,05 4,07 4,09 4,11 4,13 4,15 4,17 4,19 time(us) % p on e on t eon -10 -5 0 5 10 15 20 25 -50 0 50 100 150 200 250 300 350 400 450 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -400 -360 -320 -280 -240 -200 -160 -120 -80 -40 0 40 80 120 160 4 4,02 4,04 4,06 4,08 4,1 4,12 4,14 4,16 4,18 4,2 time(us) % i d v d fitted copyright vincotech 24 revision: 2
fz06nra045fh preliminary datasheet figure 9 boost fred figure 10 boost fred turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 30 a p rec (100%) = 10,55 kw q rr (100%) = 5,74 c e rec (100%) = 1,39 mj t qrr = 0,16 s t erec = 0,16 s figure 11 figure 12 buck stage switching measurement circuit boost stage switching measurement circuit measurement circuits switching definitions boost igbt t qrr -450 -350 -250 -150 -50 50 150 4 4,02 4,04 4,06 4,08 4,1 4,12 4,14 4,16 4,18 4,2 4,22 4,24 4,26 time(us) % i d q rr -20 0 20 40 60 80 100 120 140 160 180 200 220 240 4 4,02 4,04 4,06 4,08 4,1 4,12 4,14 4,16 4,18 4,2 4,22 4,24 4,26 time(us) % p rec e rec t erec copyright vincotech 25 revision: 2
fz06nra045fh preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-FZ06NRA045FH-p965f p965f p965f outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 26 revision: 2
fz06nra045fh preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. copyright vincotech 27 revision: 2


▲Up To Search▲   

 
Price & Availability of 10-FZ06NRA045FH

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X